首页> 外文OA文献 >Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA
【2h】

Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA

机译:确定碱基和骨架对B DNA中预熔和熔解转变的热力学的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (∼4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.
机译:在本系列的前几篇论文中,聚(dA)·聚(dT)和聚(dA–dT)·聚(dA–dT)的温度相关拉曼光谱用于表征包含连续DNA的DNA的熔解和预熔转变A·T和交替的A·T / T·A碱基对。在这里,我们描述了从拉曼数据获得热力学参数的过程。该方法利用碱基特异性和骨架特异性拉曼标记来确定A,T和脱氧核糖基磷酸酯部分对预熔融和熔融转变的独立热力学贡献。主要发现包括以下几个方面:(i)聚(dA)·聚(dT)和聚(dA–dT)·聚(dA–dT)都显示出强劲的预熔融转变,这主要是由于骨架构象变化所致。 (ii)聚(dA)·聚(dT)[ΔHvHpm= 18.0±1.6 kcal·mol-1(千摩尔每摩尔合作单位)]和聚(dA–dT)·poly( dA–dT)(ΔHvHpm= 13.4±2.5 kcal·mol-1)相差一个量(〜4.6 kcal·mol-1),估计为(dA)n·(dT)中三中心碱间氢键的贡献)n片。 (iii)聚(dA)·聚(dT)[–6.88 kcal·molbp-1(每摩尔碱基对的千位数)]的总堆积自由能大于聚(dA–dT)·聚(dA– dT)(–6.31 kcal·molbp–1)。 (iv)在poly(dA)·poly(dT)(ΔΔGst= 0.8±0.3 kcal·molbp–1)中,A和T的堆积自由能之间的差异显着,而在poly(dA–dT)·poly( dA–dT)(ΔΔGst= 0.3±0.3 kcal·molbp-1)。 (v)在poly(dA)·poly(dT)中,用于熔化A的范特霍夫参数(ΔHvHA= 407±23 kcal·mol–1,ΔSvHA= 1166±67 cal·°K–1·mol–如图1所示,ΔGvH(25°C)A = 60.0±3.2 kcal·mol–1与T明显区别(ΔHvHT= 185±38 kcal·mol–1,ΔSvHT= 516±109 cal·°K-1· mol-1,ΔGvH(25°C)T = 27.1±5.5 kcal·mol-1)。 (vi)在poly(dA–dT)·poly(dA–dT)中观察到类似的相对差异(ΔHvHA= 333±54 kcal·mol–1,ΔSvHA= 961±157 cal·°K–1·mol-1, ΔGvH(25°C)A = 45.0±7.6 kcal·mol-1;ΔHvHT= 213±30 kcal·mol-1,ΔSvHT= 617±86 cal·°K-1·mol-1,ΔGvH(25°C) T = 29.3±4.9 kcal·mol-1)。本文采用的方法在双螺旋B DNA形成的分子机理中区分了碱基堆积,碱基配对和骨架构象有序的热力学贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号